Electronics

WDBR Series

Features:

- Ultra low profile thick-film on steel
- 500W to 7kW peak power
- Single fixing heatsink mountable
- Ideal for dynamic braking, inrush limit and snubber circuits
- Choice of flying leads, push-on tags or solder terminations
- Low inductance design
- High isolation, even after failsafe overload fusing
- Non-flammable construction

All Pb-free parts comply with EU Directive 2011/65/EU amended by (EU) 2015/863 (RoHS3)

Electrical Data

		WDBR1/2	WDBR1	WDBR2	WDBR3	WDBR5	WDBR7
Resistance range	Ω	2R2 - 150R	3R3 - 270R	8R2 – 820R	8R2 – 1K0	10R – 1K5	10R – 1K0
Standard values		E12 preferred. 20R, 25R and 50R are also available.					
Resistance tolerance	%	10					
Pulse peak power rating ¹	kW	0.5	1	2	3	5	7
Power rating on heatsink ²	W	160	180	200	260	270	280
Power rating on fan cooled heatsink ³	W	300	700	780	900	1000	1490
TCR	ppm/°C	C <+600					
Maximum element temperature	°C	450					
Ambient temperature range (heatsink)	°C	-55 to +200					
Dielectric withstand ⁴	V (dc/ac pk)	2500					
Inductance	μН		<3		<4	<5	<6

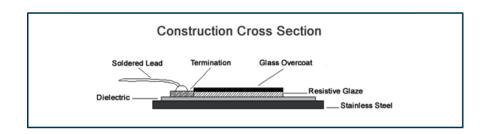
Notes:

- To rectails of pulse condition see Fig. 1 in Performance Data.

 1. For details of pulse condition see Fig. 1 in Performance Data.

 2. Mounted on a 0.53°C/W heatsink with no forced air cooling, air temperature 25°C.

 3. Mounted on a 0.53°C/W heatsink with 5m/s forced air cooling, air temperature 25°C.
- 4. Based on 100% production test, duration 2s minimum.


Physical Data

Dimension	Dimensions in mm and weight without terminations in g							dDI-		
Туре	L ±0.1	W ±0.1	t ±0.1	ØD nom	a nom	b nom	c nom	d min	Wt.	$ \begin{array}{ccc} & \rightarrow & \square & \leftarrow & \downarrow & t = \text{substrate} \\ & & & & thickness \end{array} $
WDBR1/2	31.9	28.1		2.2	7.5	3.1	4.3	1.4	6.5	d = cloorence
WDBR1	49.3	35.9		3.2	3.2	11.2	6.2	1.9	12.6	W d = clearance between expos
WDBR2	61	40.6	0.9		4.7	13	5.8	3.8	17.1	t conductor and
WDBR3	101.6	70		F 2	13.5	22	10.2	7.2	50.8	exposed steel
WDBR5	122	70		5.3	14	23.8	7.4	6.1	60.7	substrate
WDBR7	152.4	101.6	1.5		15	51.3	9.2	7.9	181.8	│

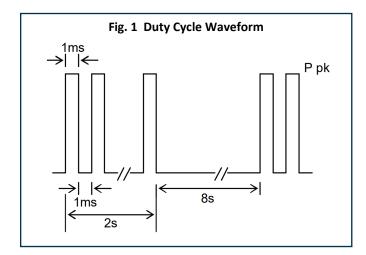
1. The fixing hole is located centrally except on WDBR1/2 where the dimension from the edge by the terminations to the mounting hole centre is 16.7mm.
2. In addition to the central fixing hole, WDBR7 has two smaller corner holes. These are present for manufacturing purposes only and should not be used as fixing holes.

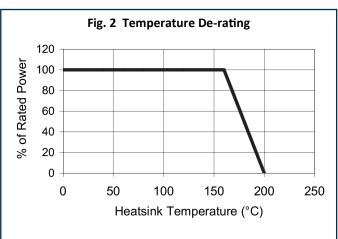
Construction

A high integrity dielectric layer is applied to a machined stainless-steel substrate. Thickfilm conductor and resistor patterns are printed and fired, then protected with a high temperature overglaze. The termination pads are tinned with solder and optional terminals or leads are soldered on.

WDBR Series

Termination Options


Option	Code	Nominal Dimensions (mm)								
Solder pads only	I	PL WDBR Size 1/2 1, 2, 3, 5 & 7 Pad Length, PL 7.5 9.0 Pad Width, PW 4.5 9.0								
Flying leads UL3134/5 40A, 600V	L	250mm								
Push-on tags	Т	TH TH TT WDBR Size 1/2 1, 2, 3, 5 & 7 Terminal Height, TH 7.5 12 Terminal Width, TW 2.8 6.3								
	'	Terminal Width, TW 2.8 6.3 Terminal Thickness, TT 0.8								


Note

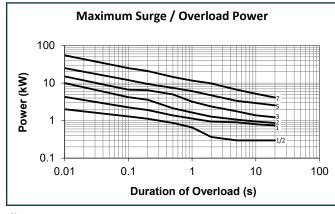
vote:
Two options exist for solder type. The standard is SnAg (96SC) which is Pb-free and the second (HT) is high temperature HMP alloy which is Pb-bearing. Both are RoHS compliant, but the second relies on the RoHS exemption for high temperature solders and is targeted at specialist high temperature applications.

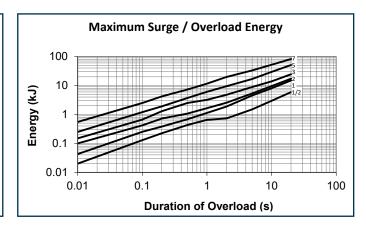
Thermal Performance

	±ΔR%
Pulsed load at full pulse power rating 50,000 cycles (see Fig. 1) Mounted on a 0.53°C/W heatsink with 5m/s forced air cooling, air temperature 25°C	5
Derating at heatsink temperatures >160°C	See Fig. 2

Application Notes

A heatsink with thermal resistance ≤0.53°C/W will enable the component to operate at its continuous power rating. Sufficient thermal grease (e.g. Dow Corning DC340) to give void-free coverage, or a 0.5mm thick compliant thermal pad (e.g. T Global TG-X) should be used and the heatsink should have a surface finish of <6.3μm with flatness of <0.05mm. The resistor should be mounted using an appropriate bolt as listed in the table below. This should be tightened so as to bring the whole area of the steel substrate into intimate contact with the heatsink. The unmounted part is slightly bowed so that the centre is above the edges. Inadequate tightening will leave the centre out of contact with the heatsink, whilst over tightening can cause the edges to rise. The tightening torque required will depend on the fixings and heatsink used, but typical figures are given for guidance.


Туре	Bolt Size	Typical Tightening Torque (Nm)
WDBR1/2	M2	0.6
WDBR1	M3	2
WDBR2		2.5
WDBR3	NAF	2.5
WDBR5	M5	3.5
WDBR7		4


WDBR resistors will fail safe (open circuit) under overload fault conditions and still maintain a 1kV dielectric withstand. Soldering of solder pad (termination I) variants requires the use of a hot plate. Hand solder process recommendations are available. WDBR resistors may be customised in various ways including:

- Alternative shapes and dimensions up to 406mm x 406mm
- Integration of temperature measurement elements and thermal cutouts
- Alternative ohmic values and tolerances
- Increased dielectric withstand voltage
- Custom braking resistors
- Integration of multiple power resistors

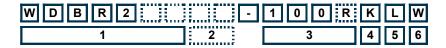
For a similar product with UL508 recognition see WDBR-UL: https://www.ttelectronics.com/TTElectronics/media/ProductFiles/Datasheet/WDBR-UL.pdf

Pulse and Overload Performance

Mounted on a 0.53°C/W heatsink with 5m/s forced air cooling, air temperature 25°C. Single pulse or low repetition rate, such that mean power ≤ 10% of rated power. △R ≤ 5%

Maximum Peak Current

Туре	Maximum Peak Current (A)
WDBR1/2	≤15R: 15.2 >15R: 7.6
WDBR1	≤20R: 21.6 >20R: 8.3
WDBR2	≤15R: 20.3 >15R: 7.6
WDBR3	≤22R: 25.4 >22R: 11.4
WDBR5	≤25R: 25.4 >25R: 10.2
WDBR7	≤25R: 44.5 >25R: 20.3


© TT Electronics plo

WDBR Series

Ordering Procedure

Example: WDBR2-100RKLW (WDBR2 with standard solder and flying lead terminations, 100 ohms ±10%, Pb-free)

1	2	3	4	5		(3	
Type	Solder Option	Value	Tolerance	Termination	Packing			
WDBR1/2	Omit for	E12	K = ±10%	I = Solder	W = Standard packing			
WDBR1	standard (96SC)	3/4 characters		pads only	Term. I	Term. L	Term. T	Bulk pack
WDBR2	HT = High	R = ohms		L = Flying	1/2			180/box
WDBR3	Temperature	K = kilohms		leads	1 & 2			100/box
WDBR5		-	•	T = Push-on		•	1 & 2	80/box
WDBR7				tags			1/2	64/box
	•				3 & 5	1/2, 1 & 2	3 & 5	40/box
					7	3, 5 & 7	7	20/box